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Es wird gezeigt, daB es bei der rationalen L2-Approximation uber einem
Intervall keine universelle Schranke fUr die Zahl der lokalen Minima gibt. Fur
spezielle Zahler- und Nennergrade wurde dies bereits von Wolfe bewiesen. Die
diskrete Approximation wird dagegen abgesetzt. Scharfere Aussagen ergeben
sich auch beim Nennergrad eins, womit Ergebnisse von SpieB vervollstandigt
werden, sowie fUr den Nennergrad zwei.

1. INTRODUCTION

This paper is concerned with mean-square approximation in the family of
rational functions

Rz. r = {g = pJq; op :S;; I, oq :S;; r, q(t) > 0 for t E [-1, +l]}.

(Here op and oq denote the degrees of the polynomials p and q, resp.) Ac­
cording to the general theory of Efimov and Stechkin [10] and of VIasov [18],
one cannot expect that the best approximation is always unique (cf. also
[1, p. 178]). Indeed, examples of functions with two best approximations
were constructed by several authors [9, 12, 16] using a symmetry argument
[13] and the nondegeneracy result of Cheney and Goldstein [8].

On the other hand, Wolfe has shown in a recent paper [19] that uniqueness
is a generic property [15, p. 18], i.e., uniqueness holds for a dense open
subset. Therefore, at first glance nonuniqueness does not seem to be a
problem from the numerical point of view, because rounding errors will
almost always cause uniqueness. But the existence of more than one best
approximation in a few cases implies the existence of more than one local
best approximation (lba) in many cases. Uniqueness of an Iba is not a
generic property. When iterative methods are applied for the computation
of the optimum, then unfortunately the Iba's may hinder the algorithm from
finding the global solution.
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How can one estimate the number of Iba's ? The first step in this direction
was the result of Wolfe, that there is no uniform bound on the number of
local best approximations in Rl •r 1 :(; r - 1. This result will be extended to
the case 1 ;> r. On the other hand, we will prove that Wolfe's result is sharp:
It is true only when the underlying set of the approximation problem is an
interval, but not if it is a finite point set.

Now the question arises whether the number of lba's is at least finite. In
[19, Remark 5] finiteness was reported for the case r = 1, i.e., for R I •1 , but
it turned out that this information was based on a (linguistic) translation
error. Now, a proof will be established under certain boundary conditions.

To treat the case r = 2, new methods must be developed. The main idea
stems from the theory of minimal surfaces. It is shown that the critical points
are either isolated or belong to one-dimensional analytical manifolds.
Moreover, tools which are used up to now "ad hoc," are put in a general
framework (which also is not completely new).

There remain many unsolved questions, but we hope that the reader will
consider this more as a stimulus than as a drawback. Moreover, the techni­
ques used are not restricted to the space L 2 [ -1, +1], and the reader may
extend the results to approximation problems in those Hilbert spaces which
are investigated in connection with optimal quadrature formulas [2].

2. CRITICAL POINTS, DEGENERACY

Though our aim is the investigation of rational functions, we will give the
basic notation in a more abstract framework. In this way we obtain a larger
independency of the parametrization of the family Rz•r • Moreover, we do
not yet restrict ourselves to the L 2-norm but consider the approximation in a
real space H with an inner product [', ']. The reader is referred to [14,
pp. 32-38] for more details.

Let A be an open set in n-space. A continuous mapping F : A ->- H defines
the approximating family

G ={F(a); a E A} C H.

Assume that the first and the second derivatives daF and da2F in the sense of
Frechet exist. Here daF is a linear transformation: ~n ->- Hand da2F is a
bilinear symmetric form on n-space: ~n X ~n ->- H. If the kernel ker daF
consists only of zero, then the tangent space at g = F(a) is given by

TgG = {daF' b; b E ~n} = daF(~n),

at least after reducing the parameter set A, if necessary [3].
The analysis is based on the square of the distance function,

pea) = Ilf - F(a)11 2 = [f - F(a),j - F(a)].

(2.1)

(2.2)
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An element g = F(a) is a best approximation (local best approximation,
resp.) tofin G, if p has a minimum (a local minimum, resp.) at the point a.
The derivatives of p are easily derived.

daP = -2[f - F(a), daF],

tdazp = [daF, daF] - [f - F(a), daZF],

which may be considered as abbreviations of

(2.3)

(2.4)

daP . h = -2[f - F(a), daF· h],
idazp . h1 . hz = [daF' h1 , daF' hz] - [f - F(a), daZF· h1 . hz].

An element g = F(a) is called a critical point if daP = O. Obviously, each
lba is a critical point. The converse is not true in general. For this reason
second-order terms are analyzed.

DEFINITION 2.1. Let F(a) be a critical point. The number of negative
eigenvalues of dazp is called its index, and the dimension of ker da2p is called
its nullity. A critical point is degenerate if its nullity is greater than o.

The index and the nullity do not change if another parameterization is
chosen which is related to the given one through a CZ-mapping. Thus, it is
not necessary to distinguish between an element g E G and its parameter and
we will sometimes call a instead of F(a) a critical point.

Throughout this paper the term degeneracy is used in the sense of Defini­
tion 2.1. The complication which arises from degeneracy becomes apparent
from the following lemma.

LEMMA 2.1. Nondegenerate critical points are isolated.

Proof Put
cP;(a) = (oloa;) pea),

If ao is a nondegenerate critical point, then

i = 1,2, ... , n. (2.5)

l
Oin

det oak cP;(ao) i.k=1 cF o.

It follows from the implicit function theorem that in a sufficiently small
neighborhood of ao there is exactly one solution of

cPi(a) = Yi' i = 1,2,... , n, (2.6)

provided that Yi is sufficiently small. Hence, ao is an isolated solution of (2.6)
with Y1 = Yz = ... = Yn = O. D

Note that the classical criteria say the following. If a critical point is an
lba, then its index is zero. On the other hand, each critical point with vanishing
index and nullity corresponds to a (strict) lba.
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Expression (2.4) splits into two terms in a natural way. As usual, they are
called the first and the second fundamental form, respectively [14, p. 33].
The first fundamental form is positive definite, provided that ker daF = {O}.

Let a be a critical point tofin G. Then this point a is also critical when the
functions

fA = F(a) + AU - F(a)), A> 0,

are approximated. The corresponding second derivative is

(2.7)

Hence, only the second fundamental form depends on A. The index vanishes
for sufficiently small A. This implies uniqueness wheneverf is sufficiently close
to the approximating family [17, 19].

3. NONEXISTENCE OF A UNIFORM BOUND

Let the space L 2 [ -1, +1] be endowed with the inner product

I
+1

[f,g] = f(t)g(t)dt.
-1

(3.1 )

As was pointed out by Wolfe, there is no bound on the number of Iba's in
RZ•T which is independent of f, if I ~ r - 1. This is a consequence of [19,
Theorem 6], which is given for the reader's convenience.!

THEOREM 3.1. Let I < r. Assume that gi = Pi/qi E Rl,T\R I-l.T- 1 , Oqi = r,
i = 1,2,... , N, are such that qi and qj have no common factors unless i = j.
Then there is anfE L 2[-1, +1] to which g1, g2 ,... , gN are local best approxi­
mations in R I •T.

rt is the aim of this section to present an extension to the case I ?: r.

THEOREM 3.2. Let I?: r ?: 1, and put m = 1- r. Assume that Pi/qi E

R T-l.T\RT- 2,T-1, aqi = r, i = 1,2,... , N, are such that qi and qj have no
common factors unless i = j. Then there are polynomials Ui , aUi ~ m, i = 1,
2, ... , N and there is an fE L 2[-I, +1] such that each gi = Ui + pdqi is a
local best approximation to f in R l • r •

Remark. Theorem 3.1 cannot be extended to the case I?: r without
modification, namely, ifIi is an lba to f, then zero is the best approximation
to f - gi in Pm := Rm. o . Hence,f - gi is contained in Pm-\ the orthogonal
complement of Pm . This implies gi - gj E Pm -L for all i, j.

1 The zero polynomial has the degree - 1.
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To overcome this difficulty the polynomials Ui, i = 1, 2,... , N will be
chosen as the best approximations of (-pdqi) in Pm. Consequently, gi E pm-L.

LEMMA 3.3. Assume that for ql ,q2 ,... , qN the conditions of Theorem 3.2
prevail. Then ho E Pm , hi E P3r-l , i = 1, 2, ... , rand

N

ho + L (hdql) = 0
i~1

imply ho = hI = ... = hN = O.

Proof After multiplying (3.2) by ql, we obtain

hj = ~ql \ L. hdql + hol\.
?z#J

(3.2)

Since the degree of qj is exactly r, the polynomial hj has at least 3r zeros
counting multiplicities. Hence, hj = 0 for j = 1,2,... , N. Now, ho = 0 is
immediate. 0

Proof of Theorem 3.2. The main idea is to show the existence of an
element/, such that

[f - gi , da,F] = 0,

[f - gi , d;,F] = 0,

(3.3)

(3.4)

where gl ,g2 ,... , gN are constructed as specified in the remark above. Note
that (3.4) means that the second fundamental form vanishes and that d 2p
coincides with the first fundamental form. This implies that gi is a critical
point with vanishing index and nullity. Hence, each gi is an lba.

The rational functions in R I •r may be written as the sum of functions in
Rr-l.r and of Pm. Consequently, the tangent space at gi is spanned by the
tangent spaces of Rr-l.r at pdqi and by the tangent space of Pm at Ui . The
tangent space of Pm coincides with Pm and the other tangent space was
calculated in [19]; it is q:;2P2r_1 • Reformulating (3.3) as

f ~ gi E (TviRI.rY

leads to the equivalent relations

f - gi E (qi2 . P2r_1)-L,

f - gi E Pm-L.

Since by construction gi E Pm\ the latter relation is reduced to

f- OEP",.

(3.5)

(3.6)
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When calculating second derivatives we may neglect the linear space Pm
and restrict our attention to Rr-l,r' As was shown in [19], the functions
{d:'p' b . b; b E ~2~} corresponding to Rr-l,r are contained in qi3

. P3r- 1 .

Hence, the relations (3.4) are guaranteed, if we can establish

i = 1,2,... , N. (3.7)

Obviously, (3.7) implies (3.5). Now, combining [19, Lemma 6] and Lemma 3.3
it follows that there is indeed a function f satisfying (3.6) and (3.7). This
completes the proof. 0

Actually, the rational functions gi are strictly local best approximations to
the constructed function f, because the bilinear forms d:p are positive
definite. '

DEFINITION 3.1. g is called a strictly local best approximation to fin G,
if it is the unique best approximation in some open neighborhood U ofgin G.

For strict best approximations the following lemma holds, the proof of
which is omitted.

LEMMA 3.4. Let go be a strict local best approximation to fo in a locally
compact set G. Then there is a neighborhood U ofgo in G and a 0 > 0, such
that there is at least one local best approximation to f in U, whenever
Ilf - .to II < o.

Let g1' g2 ,... , gN be defined as in Theorem 3.2 and letfo be a function as
constructed in the proof. Since Rl,r\R1-l,r-1 is an (l + r + I)-dimensional
manifold, it is locally compact and Lemma 3.4 may be applied N times. We
obtain at least N l.b.a's for all functions sufficiently close to fo . Hence, we
obtain as a consequence

COROLLARY 3.5. Uniqueness of local best approximations in Rl,r is not a
generic property.

We conclude this section with two problems.

PROBLEM 3.1. In the theory of optimal quadrature formulas f - g is
called a monospline [4, 7] if g E R 1•r andfpossesses a representation

f
+1

f(t) = u(t) + (t 1- r +1/(1 - xt)) dJ-t(X),
-1

(3.8)

where au ~ I - rand dJ-t is a nonnegative measure. The functions of the
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form (3.8) define a cone. Can Wolfe's construction be extended to establish
functions f in this cone with a given number of local best approximation?

PROBLEM 3.2. ]s it possible to exhibit a function f which has at least 3
best approximations (not only with 3 local best approximations)?

4. THE CASE r = 1

The rational functions in R l •1 may be represented in the form

1-1
F(a, t) = (extl/(l - xt» + L f3,J",

,,~O

(4.1)

where the parameter a = (ex, x, f30 ,... , f31-1) is an element in (l + 2)-space. ]f
the approximation is taken on the interval -1 ~ t ~ + I, then the charac­
teristic number x is restricted to (-1, +1), and

A ={(ex, x, f30 ,... , f31-1) E[Rl+2; -I < x < I}.

Moreover, we adopt the convention that the sum in (4.1) is void if 1 = O.
If the parameter x is fixed, then the approximation problem is reduced to

a linear problem and optimal values for ex, f30 ,... , f31-1 are associated to x.
Thus, a one-dimensional manifold is defined. It will turn out that this is even
an analytical submanifold of L 2[-I, +1]. Obviously, each critical point is
contained in this manifold. But which of its elements are really critical
points?

Let g = F(a), ex =F O. By computing derivatives we obtain

TgR l.1 = span{l, t, ... , t 1-\ tl(l - xt)-\ tl+1(l - xt)-2}. (4.2)

Recall that critical points are characterized by

[I - F(a), h] = 0,

After inserting (4.1) and (4.2) we get

(4.3)

1-1
- L [t", tv] . f3" = 0,

u=o
v = 0, 1,... ,1-1,

(4.4)

1-1
- L [t'" t 1+v(1 - xt)-l-v] . f3" = 0,

11",-,0

v = 0,1.
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This homogeneous system of 1+ 2 equations for the 1+ 2 values 1, -ex,

-f30 ,... , -f3!-l has a solution only if its determinant, call it if;(x) , vanishes.
Consequently, the zeros of the function if; are of main interest.

First, observe that for each g E L 2 [ -1, +1], the functions

[g, (1 - xt)-"], f.k = 1,2,... ,

are analytic in the unit disc{x E iC; i x ! < I}.
Indeed, inserting the power series

(l - z)-" = L cvzv,
v=o

we obtain the representation

I zl < I,

w

[g, (1 - xt)-,,] = L ev[g, tv] xv.
v=o

(4.5)

Since the inner products may be estimated by applying the Cauchy-Schwarz
inequality

I[g, tv]1 ~ II gil II tV il ~ 211 g I' ,

analyticity in the unit disk is established for the function in (4.5), the matrix
elements of linear equations (4.4) are analytic functions. Since the first I + 1
of them define the manifold specified above, the manifold is an analytic one.

As an analytic function if;(x) is a constant or it has only isolated zeros.
Now the following result is immediate.

LEMMA 4.1. Let f E L 2 [ -1, +1]. Then either all critical points in Rl,l are
isolated or the set of critical points is a one-dimensional analytic submanifold

ofRl,l'

We claim that the second alternative is impossible, For the special case
when I = 0 this was already proved by SpieI3 using an integral transformation
[16, Satz 3.6]. Our prooffor arbitrary I ~ 0 is based on the following lemma;
another proof is given in [11].

LEMMA 4.2. Let f E L 2[-I, +1] and I > O.
Then

lim {[f, tl(l - xt)-l]/IJ tl(l - xt)-l il} = O.
x-o-l
x<l

Proof There is nothing to prove if f = O. Assume f 7'= O. Given € > 0,
there is a to < 1 such that r11(t)1 2 dt < !€2.

to
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Furthermore, some elementary calculations establish the estimate

f
~ I

t 21(l - xt)-2 dt < (E/4 • IIfl1)2 f t 2l(l - xt)-2 dt
-I -I

for x sufficiently close to 1. By splitting the integral ff· tl(l - tX)-1 dt at
t = to and applying the Cauchy-Schwarz inequality to each term, we obtain
Ilf, tl(l - tX)-l] I < Ell tl(l - tx)-III. 0

Now we turn to a reduction of Eqs. (4.4) and the associated determinant.
The reader may observe that the quotient space H/P l _ 1 is introduced im­
plicitly.

Note that the approximation problem does not change if we subtract
from the given function f a polynomial of degree ::( I - 1; in particular, this
may be done with the best approximation off in PI-I' Thus we may assume
fE Pt-l'

Moreover, the representation for the elements in R l • l is changed. Instead
of (4.1), write

I-I

F(a) = ex' vex) + L (J",t"',
",~o

(4.6)

where vex) E H, -1 < x < +1, which is obtained from the function
tl/(l - xt) by subtracting the best approximation in PI-I,

I-I

vex) = tl(l - xt)-I - L [tl(l - tx)-\ u",] u'" . (4.7)
",~o

Here, Uo , UI , ... , Ul-I are assumed to be orthogonal polynomials with norm
unity which span PI-I' Hence,

vex) E PL, -1 < x < +1. (4.8)

From (4.6) another basis of the tangent space is derived.

TgR z•I = span {I, t, ... , t1-1, vex), (d/dx) vex)}.

Let F(a) be a critical point for fE Pt-I' It follows from (4.3) that both
f - F(a) and F(a) are contained in Pt-I' Then (4.8) implies that F(a) =

ex . v(x) and that the polynomial terms in (4.6) vanish. Hence, criticality may
be characterized by

[f - ex . v(x), h] = 0, hE span {vex), (d/dx) vex)},
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which is explicitly

[f, V(X)] . 1 - [V(X), V(X)] . IX = 0,

[f, (dldx) V(X)] . 1 - [V(X), (dldx) V(X)] . iX = 0.

145

(4.9)

Another possible way to derive (4.9) is to perform appropriate row and
column manipulations with (4.4). Consequently, the determinant of (4.9) is a
multiple of tj;(x).

I
[f, v(x)] [v(x), v(x)] I

tj;(x) = const . det (dldx)[f, v(x)] (1/2)' (dldx)[v(x), v(x)]

= const . il v(x)112
• (dldx){[f, v(x)]/11 v(x)II}.

Hence, tj; = °implies

(4.10)

[f, v(x)] = c . II v(x)11 , - 1 < x < 1, (4.11)

with some constant c independent of x. Since the orthogonal complement of
{(I - xt)-l, -1 < x < +l} in L 2[-1, +1] consists only of the zero func­
tion [8], we have c =Fe 0, apart from the trivial case that we have started with,
namely,fa polynomial in PZ- 1 •

The choicefE pL implies [f, v(x)] = [f, t l(1 - xt)-l]. By Lemma 4.2, the
ratio [f, v(x)]/11 tl(l - tx)-lll tends to zero as x --+ 1. On the other hand,
from (4.7) and Lemma 4.2 we conclude II v(x)11/11 tl(l - tx)-lll--+ 1. This is a
contradiction and we have proved

THEOREM 4.3. For each f E L 2[-1, + 14 the critical points in R z•1 are
isolated.

If there is an infinite number of critical points, then their characteristic
numbers will have + 1 or -1 as an accumulation point. This can be excluded
for functionsfwith a nice behavior at the boundary points t = + 1, t = -1;
i.e., more explicitly, if

f(t) = g(t) . (1 - t)",

f(t) = h(t) . (1 + t)",

g(l) =Fe 0, I< > 0,

h(-l) =Fe 0, I< > 0.

Here, we will restrict the explicit computations to the easiest case.

THEOREM 4.4. If fE C[-l, +1] and f(1) =Fe 0, f(-I) =Fe 0, then the
number of critical points in Ro.l is finite.
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Proof Given E > 0, fix 0 > 0 such that i f(O - f(OI < E, whenever
t > 1 - o. Put.fo = 2 max If(OI and estimate

If
1

[jet) - f(1)](dt/(1 - xt)) I

~ f (E/(I - xt)) dt + r-a
Uo/(1 - xt)) dt

I-a -1

~ (E/X) 10g(1/(1 - x)) + Uo/x) log(2/(l - 0)).

Consequently, we have

[f, (l - xO-1 ] = f(1) ·log(1/(l - x)){1 + o(l)},

as x -+ 1.
In the same manner the following estimates are derived.

[f, t(1 - xt)-2] = (l/2)f(l)(l/(l - x)){1 + o(1)},

[(1 - xt)-t, (1 - xt)-I] = (1/2)(1/(1 - x)){1 + o(1)},

[(1 - xO-t, t(1 - xt)-2] = (l/3)(1/(1 - x)2){1 + o(1)}.

By insering these expressions into (4.7), we get

If;(x) = (1/3)f(I) . (1/(1 - X)2) . log(l/(l - x)) . {I + o(I)},

as x -+ 1. A similar analysis for x -+ -1 yields

If;(x) = (I/3)f(-1)(1/(1 + x)2) 10g(1/(l + x)){1 + o(1)}.

Hence, the zeros of If; are contained in a compact subset of (-1, +1). Since
all zeros are isolated, the number is finite. 0

5. DISCRETE CASE

Wolfe's result on the nonexistence of a bound refers to the approximation
on intervals. It cannot be extended to the approximation on a finite point set.

Indeed, let T = {tl , t 2 , ••• , t N } be a finite subset of IR, and let C(T) be
endowed with the inner product

N

[f, g] = L f(ti) g(ti)'
i~1

Obviously, for each g E C(T) the inner product

[g, (1 - xO- v
] (5.1)
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is a rational function in x. Its denominator is IT (1 - tix)v, and the numerator
is a polynomial with degree ~ (N - l)v.

Now, consider the determinant of system (4.4). When applying Laplace's
rule, we recognize that each term is a product of terms of the form (5.1) such
that the sum of the v's is 4. Hence, if;(x) is a rational function belonging to
R 4(N-I).4N with numerator IT~~1 (1 - ti X)4. As an immediate consequence
we have

THEOREM 5.1. Let T be a set consisting ofN points, N ~ I + 3. Then there
are at most 4(N ~ 1) critical points to fin R 10I •

(The possibility that the set of critical points form a one-dimensional
manifold is excluded by the methods used in Section 4.)

6. THE CASE r = 2

If we apply the techniques from Section 4 to R Z•T , then we get only the
information that the set of critical points may be characterized as the
simultaneous zeros of r analytic functions of r variables. This means that the
set of critical points is an analytic set. For r = 2, we Qbtain sharper infor­
mation. At least under assumptions which are satisfied in the monospline case,
the critical points are isolated or belong to one-dimensional analytic
manifolds. The main idea for the treatment stems from the theory of minimal
surfaces where a similar situation occurs.

For a representation of the elements of Rz,2 , 1+ 3 parameters are needed.
Since the functions depend linearly on I + 1 of them, the second derivative
da

2p is positive definite on an (I + I)-dimensional subspace. Consequently,
the sum of index and nullity does not exceed 2. The following theorem
provides a sharper bound.

THEOREM 6.1. Let g E RZ,2, I ~ 1, be a critical point to f in RZ,2' More­
over, assume that g has two distinct real poles. Then the nullity ofg is at most 1.

Proof Write the critical point g in the form

where Xl < X 2 and

Z-2 2

get) = L fJ".t" + L CXv')l(xv , t),
u=O 11=1

')I(x, t) = (l - xt)-l.

(6.1)

(6.2)

This abbreviation is used not only for convenience, but also to show that the
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theorem is not restricted to rational functions and may be easily extended
to the approximation by y-polynomials [1,2,6]. Furthermore, let

y(")(X, t) = (o"/ox") y(x, t),

Critically of g implies

[f - g, t"] = 0,

[f - g, y(xv , t)] = 0,

[I - g, y(l)(xv , t)] = 0,

fL = 0, 1,2,....

fL = 0, I, ... , 1-2,

v = 0, I,

v = 0, 1.

When calculating second derivatives of F(a), all terms vanish or are
orthogonal to1 - g except

v = 1,2.

If we associate to each b = ({3o ,... , (31-2 , e1 , e2 , 7]1 , 7]2) E [Rl+3 the corre­
sponding element in the tangent space

1-2 2

h = daF' b = L {3"t" + L {gvY(xv , t) + 7]vcxvy(l)(xv , t)}, (6.3)
IJ,=O v=l

then we obtain from (2.4)

2

!da
2p . b . b = [h, h] - I cxv7]v2[1 - g, y(2)(xv , t)]. (6.4)

v=l

From (6.3) it is obvious that

da2p . b . b > 0, b #- 0,

whenever 7]1 = 7]2 = 0.
Suppose that the nullity is 2. Then the kernel of da

2p contains a vector b
with vanishing coordinate 7]2 • Since the corresponding tangent vector h has
the form

2

h = u(t) + L evY(xv , t) + 7]1y(1)(X1 , t),
v=l

it is contained in R1+1,3 and has at most I + I zeros in (-I, + I). Since

1, t,oo., t l- 2, y(x1 , t), y(x2 , t), y(l)(x2, t)

(6.5)

(6.6)

is a Markov chain with I + 2 elements, the span contains an element
Ii = daF5 which has simple zeros exactly at those points, where h(t) changes
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its sign. After multiplying n by (-1) if necessary, we have h(t) net) ~°for all
t E [-1, +1], and

[h, Ii] > 0. (6.7)

On the other hand, compare (6.4) and observe that hand nwere constructed
such that

tda2p . b ·5 = [h, Ii].

Since b E ker da
2p, it follows that [h, Ii] = 0, contradicting (6.7). 0

Remark 6.2. The proof of Theorem 6.1 shows that ker da2p contains only
elements of the form (6.3) with 7]1 =1= 0, 7]2 =1= 0.

A direct generalization of Theorem 6.1 is the following. Let g E Rl,r ,

I ~ r - 1, be a critical point to f in R l •r • Moreover, assume that g has r
distinct real poles. Then the nullity of g does not exceed (r + 1)j2. We
conjecture, however, that this result is not the best possible.

As a consequence of Theorem 6.1, we obtain

THEOREM 6.3. Each critical point in R1,2 , I - 1, having only distinct real
poles is isolated or belongs to a one-dimensional analytic submanifold of R I •2
which consists of critical points.

Proof There is nothing to prove if the nullity vanishes. Therefore, assume
that the nullity is one. Referring to representation (6.1), we consider the
coupled equations

(fJjfJf3,.)p = 0,

(fJjfJcxv)p = 0,

(fJjfJx1)p = 0,

I.t = 0, 1,... , I - 2,

v = 1,2,
(6.8)

The Jacobian matrix for these equations is just da
2p after replacing its last

row by (0,0, ... ,0, 1). It follows from Remark 6.2 that this matrix is not
singular. By the implicit function theorem there is a unique solution a = a(z)
of (6.8) in a neighborhood of the critical point go whenever z is sufficiently
close to x~o) the larger characteristic number of go. Hence, (6.8) defines a
one-dimensional manifold parametrized by z. Obviously, each critical point
of f in some neighborhood of go, must lie on the manifold. Consider the
function

This function is analytic in a neighborhood of z = x~o). It has either an
isolated zero at X 0

2 or it vanishes identically. This completes the proof. D
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If the given function f possesses a representation (3.8) then each critical
point satisfies the assumptions of the preceding theorems. This is known
from the theory of monosplines [2]. Assume that the set of critical points
contains a one-dimensional manifold. Then X 2 may be taken as a coordinate.
From Remark 6.2 we conclude that also dx1/dx2 oF O. Hence, the manifold
is not a loop, and it cannot be compact. By using an open-closed argument,
the manifold may be continued unless one of the characteristic numbers
tends to +1 or -I.
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